Linear Street Extraction Using a Conditional Random Field Model

نویسندگان

  • Padraig Corcoran
  • Peter Mooney
  • Michela Bertolotto
چکیده

A novel method for extracting linear streets from a street network is proposed where a linear street is defined as a sequence of connected street segments having a shape similar to a straight line segment. Specifically a given street network is modeled as a Conditional Random Field (CRF) where the task of extracting linear streets corresponds to performing learning and inference with respect to this model. The energy function of the proposed CRF model is submodular and consequently exact inference can be performed in polynomial time. This contrasts with traditional solutions to the problem of extracting linear streets which employ heuristic search procedures and cannot guarantee that the optimal solution will be found. The performance of the proposed method is quantified in terms of identifying those types or classes of streets which generally exhibit the characteristic of being linear. Results achieved on a large evaluation dataset demonstrate that the proposed method greatly outperforms the aforementioned traditional solutions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

Heterogeneous Web Data Extraction Algorithm Based On Modified Hidden Conditional Random Fields

As it is of great importance to extract useful information from heterogeneous Web data, in this paper, we propose a novel heterogeneous Web data extraction algorithm using a modified hidden conditional random fields model. Considering the traditional linear chain based conditional random fields can not effectively solve the problem of complex and heterogeneous Web data extraction, we modify the...

متن کامل

Nonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}

The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...

متن کامل

Clinical Name Entity Recognition using Conditional Random Field with Augmented Features

In this paper, We presents a Chinese medical term recognition system submitted to the competition held by China Conference on Knowledge Graph and Semantic Computing. I compare the performance of Linear Chain Conditional Random Field (CRF) with that of Bi-Directional Long Short Term Memory (LSTM) with Convolutional Neural Network (CNN) and CRF layers performance and find that CRF with augmented ...

متن کامل

Confidence Estimation for Information Extraction

Information extraction techniques automatically create structured databases from unstructured data sources, such as the Web or newswire documents. Despite the successes of these systems, accuracy will always be imperfect. For many reasons, it is highly desirable to accurately estimate the confidence the system has in the correctness of each extracted field. The information extraction system we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016